Cryptographic protocol

A security protocol (cryptographic protocol or encryption protocol) is an abstract or concrete protocol that performs a security-related function and applies cryptographic methods. A protocol describes how the algorithms should be used. A sufficiently detailed protocol includes details about data structures and representations, at which point it can be used to implement multiple, interoperable versions of a program.

A wide variety of cryptographic protocols go beyond the traditional goals of data confidentiality, integrity, and authentication to also secure a variety of other desired characteristics of computer-mediated collaboration. Blind signatures can be used for digital cash and digital credentials to prove that a person holds an attribute or right without revealing that person’s identity or the identities of parties that person transacted with. Secure digital time stamping can be used to prove that data (even if confidential) existed at a certain time.

Secure multiparty computation can be used to compute answers (such as determining the highest bid in an auction) based on confidential data (such as private bids), so that when the protocol is complete the participants know only their own input and the answer. End-to-end auditable voting systems provide sets of desirable privacy and auditability properties for conducting e-voting.

Undeniable signatures include interactive protocols that allow the signer to prove a forgery and limit who can verify the signature. Deniable encryption augments standard encryption by making it impossible for an attacker to mathematically prove the existence of a plain text message. Digital mixes create hard-to-trace communications.